158 research outputs found

    von K\'arm\'an-Howarth equation for three-dimensional two-fluid plasmas

    Full text link
    We derive the von K\'arm\'an-Howarth equation for a full three dimensional incompressible two-fluid plasma. In the long-time limit and for very large Reynolds numbers we obtain the equivalent of the hydrodynamic "four-fifth" law. This exact law predicts the scaling of the third-order two-point correlation functions, and puts a strong constraint on the plasma turbulent dynamics. Finally, we derive a simple expression for the 4/5 law in terms of third-order structure functions, which is appropriate for comparison with in-situ measurements in the solar wind at different spatial ranges

    The spatio-temporal spectrum of turbulent flows

    Get PDF
    Identification and extraction of vortical structures and of waves in a disorganised flow is a mayor challenge in the study of turbulence. We present a study of the spatio-temporal behavior of turbulent flows in the presence of different restitutive forces. We show how to compute and analyse the spatio-temporal spectrum from data stemming from numerical simulations and from laboratory experiments. Four cases are considered: homogeneous and isotropic turbulence, rotating turbulence, stratified turbulence, and water wave turbulence. For homogeneous and isotropic turbulence, the spectrum allows identification of sweeping by the large-scale flow. For rotating and for stratified turbulence, the spectrum allows identification of the waves, precise quantification of the energy in the waves and in the turbulent eddies, and identification of physical mechanisms such as Doppler shift and wave absorption in critical layers. Finally, in water wave turbulence the spectrum shows a transition from gravity-capillary waves to bound waves as the amplitude of the forcing is increased.Fil: Clark Di Leoni, Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Cobelli, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentin

    Kelvin-Helmholtz versus Hall Magneto-shear instability in astrophysical flows

    Get PDF
    We study the stability of shear flows in a fully ionized plasma. Kelvin-Helmholtz is a well known, macroscopic and ideal shear-driven instability. In sufficiently low density plasmas, also the microscopic Hall magneto-shear instability can take place. We performed three-dimensional simulations of the Hall-MHD equations where these two instabilities are present, and carried out a comparative study. We find that when the shear flow is so intense that its vorticity surpasses the ion-cyclotron frequency of the plasma, the Hall magneto-shear instability is not only non-negligible, but it actually displays growth rates larger than those of the Kelvin-Helmholtz instability

    Energy transfer in Hall-MHD turbulence: cascades, backscatter, and dynamo action

    Full text link
    Scale interactions in Hall MHD are studied using both the mean field theory derivation of transport coefficients, and direct numerical simulations in three space dimensions. In the magnetically dominated regime, the eddy resistivity is found to be negative definite, leading to large scale instabilities. A direct cascade of the total energy is observed, although as the amplitude of the Hall effect is increased, backscatter of magnetic energy to large scales is found, a feature not present in MHD flows. The coupling between the magnetic and velocity fields is different than in the MHD case, and backscatter of energy from small scale magnetic fields to large scale flows is also observed. For the magnetic helicity, a strong quenching of its transfer is found. We also discuss non-helical magnetically forced Hall-MHD simulations where growth of a large scale magnetic field is observed.Comment: 25 pages, 16 figure

    Single-particle dispersion in stably stratified turbulence

    Get PDF
    We present models for single-particle dispersion in vertical and horizontal directions of stably stratified flows. The model in the vertical direction is based on the observed Lagrangian spectrum of the vertical velocity, while the model in the horizontal direction is a combination of a continuous-time eddy-constrained random walk process with a contribution to transport from horizontal winds. Transport at times larger than the Lagrangian turnover time is not universal and dependent on these winds. The models yield results in good agreement with direct numerical simulations of stratified turbulence, for which single-particle dispersion differs from the well studied case of homogeneous and isotropic turbulence

    Simulations of the Kelvin-Helmholtz instability driven by coronal mass ejections in the turbulent corona

    Full text link
    Recent high resolution AIA/SDO images show evidence of the development of the Kelvin-Helmholtz instability, as coronal mass ejections (CMEs) expand in the ambient corona. A large-scale magnetic field mostly tangential to the interface is inferred, both on the CME and on the background sides. However, the magnetic field component along the shear flow is not strong enough to quench the instability. There is also observational evidence that the ambient corona is in a turbulent regime, and therefore the criteria for the development of the instability are a-priori expected to differ from the laminar case. To study the evolution of the Kelvin-Helmholtz instability with a turbulent background, we perform three-dimensional simulations of the incompressible magnetohydrodynamic equations. The instability is driven by a velocity profile tangential to the CME-corona interface, which we simulate through a hyperbolic tangent profile. The turbulent background is generated by the application of a stationary stirring force. We compute the instability growth-rate for different values of the turbulence intensity, and find that the role of turbulence is to attenuate the growth. The fact that the Kelvin-Helmholtz instability is observed, sets an upper limit to the correlation length of the coronal background turbulence

    Inverse cascades and resonant triads in rotating and stratified turbulence

    Get PDF
    Kraichnan’s seminal ideas on inverse cascades yielded new tools to study common phenomena in geophysical turbulent flows. In the atmosphere and the oceans, rotation and stratification result in a flow that can be approximated as two-dimensional at very large scales but which requires considering three-dimensional effects to fully describe turbulent transport processes and non-linear phenomena. Motions can thus be classified into two classes: fast modes consisting of inertia-gravity waves and slow quasi-geostrophic modes for which the Coriolis force and horizontal pressure gradients are close to balance. In this paper, we review previous results on the strength of the inverse cascade in rotating and stratified flows and then present new results on the effect of varying the strength of rotation and stratification (measured by the inverse Prandtl ratio N/f, of the Coriolis frequency to the Brunt-Väisäla frequency) on the amplitude of the waves and on the flow quasi-geostrophic behavior. We show that the inverse cascade is more efficient in the range of N/f for which resonant triads do not exist, /2≤N/f≤21/2≤N/f≤2. We then use the spatio-temporal spectrum to show that in this range slow modes dominate the dynamics, while the strength of the waves (and their relevance in the flow dynamics) is weaker.Fil: Oks, D.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Marino, R.. Universite Lyon 2; FranciaFil: Pouquet, A.. State University of Colorado Boulder; Estados Unido

    Turbulent magnetic dynamo excitation at low magnetic Prandtl number

    Full text link
    Planetary and stellar dynamos likely result from turbulent motions in magnetofluids with kinematic viscosities that are small compared to their magnetic diffusivities. Laboratory experiments are in progress to produce similar dynamos in liquid metals. This work reviews recent computations of thresholds in critical magnetic Reynolds number above which dynamo amplification can be expected for mechanically-forced turbulence (helical and non-helical, short wavelength and long wavelength) as a function of the magnetic Prandtl number PMP_M. New results for helical forcing are discussed, for which a dynamo is obtained at PM=5×103P_M=5\times10^{-3}. The fact that the kinetic turbulent spectrum is much broader in wavenumber space than the magnetic spectrum leads to numerical difficulties which are bridged by a combination of overlapping direct numerical simulations and subgrid models of magnetohydrodynamic turbulence. Typically, the critical magnetic Reynolds number increases steeply as the magnetic Prandtl number decreases, and then reaches an asymptotic plateau at values of at most a few hundred. In the turbulent regime and for magnetic Reynolds numbers large enough, both small and large scale magnetic fields are excited. The interactions between different scales in the flow are also discussed.Comment: 8 pages, 8 figures, to appear in Physics of Plasma

    On the emergence of helicity in rotating stratified turbulence

    Get PDF
    We perform numerical simulations of decaying rotating stratified turbulence and show, in the Boussinesq framework, that helicity (velocity-vorticity correlation), as observed in super-cell storms and hurricanes, is spontaneously created due to an interplay between buoyancy and rotation common to large-scale atmospheric and oceanic flows. Helicity emerges from the joint action of eddies and of inertia-gravity waves (with inertia and gravity with respective associated frequencies ff and NN), and it occurs when the waves are sufficiently strong. For N/f<3N/f < 3 the amount of helicity produced is correctly predicted by a quasi-linear balance equation. Outside this regime, and up to the highest Reynolds number obtained in this study, namely Re10000Re\approx 10000, helicity production is found to be persistent for N/fN/f as large as 17\approx 17, and for ReFr2ReFr^2 and ReRo2ReRo^2 respectively as large as 100\approx 100 and 24000\approx 24000.Comment: 10 pages, 5 figure
    corecore